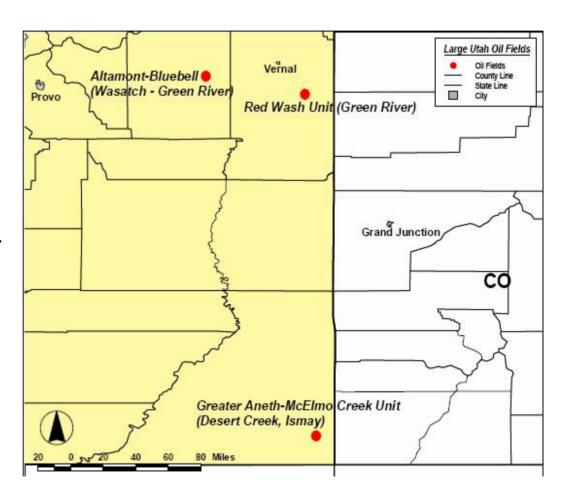


a leading climate change portfolio and CCS developer

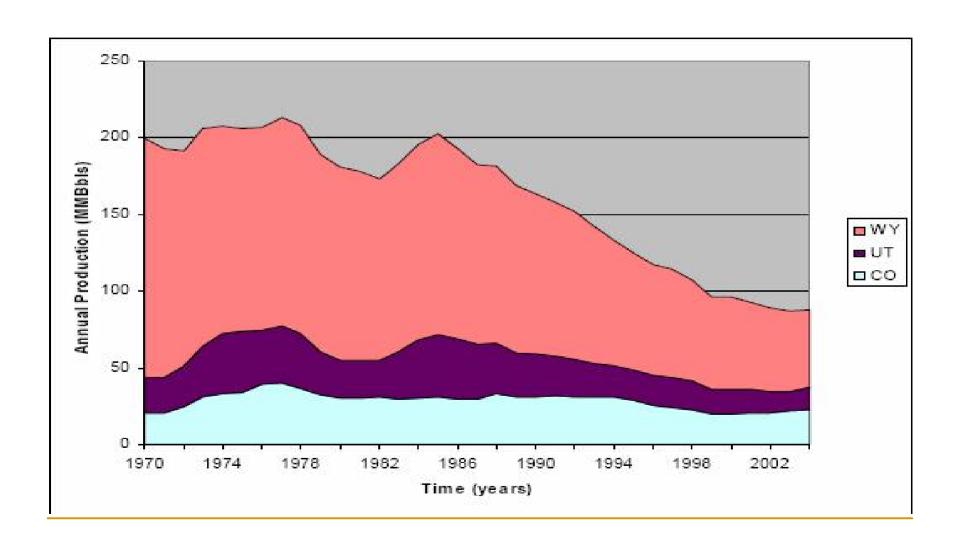
Anthropogenic CO₂ in CCS with EOR: Project Experience & Lessons Learned

Utah Ghg Working Group Salt Lake City, Utah May 8, 2007

For the next 20 mins...


Why CCS with EOR in Utah?

Sharing experience and lessons learned.


 Sharing the process of CCS with EOR project development.

Utah CCS in EOR Potential – How Big?

- Target: 740 million barrels (\$30B)
- Potential CO₂ in EOR storage capacity of
 - 200 million tonnes
 - 3.5 TCF or 0.3 BCFD for 30 years
 - Approx. 1000 MWs of coal-sourced power generation
- CO₂ Sourcing Logistics
- Export/Import CO₂ Race

Decline in Rocky Mountain Production

Potential Utah EOR Floods - Advanced

Utah	ALATAMONT-BLUEBELL	WASATCH AND GREEN RIVER
Utah	ASHLEY VALLEY	PHOSPHORIA-WEBER
Utah	GREATER ANETH-ANETH UNIT	DESERT CREEK/ISMAY*
Utah	GREATER ANETH-MCELMO CREEK UNIT	DESERT CREEK/ISMAY
Utah	GREATER ANETH - RATHERFORD UNIT	DESERT CREEK/ISMAY
Utah	GREATER ANETH - WHITE MESA UNIT	DESERT CREEK/ISMAY
Utah	LISBON	MADISON - REDWALL
Utah	MONUMENT BUTTE	GREEN RIVER
Utah	PINEVIEW	NUGGET SANDSTONE
Utah	PINEVIEW	TWIN CREEK
Utah	RED WASH UNIT	GREEN RIVER
Utah	UPPER VALLEY UNIT	KAIBAB
Utah	WALKER HOLLOW	GREEN RIVER
Utah	WONSITS VALLEY	GREEN RIVER

Blue Source Experience and Lessons Learned

Blue Source CO₂A in EOR Experience

- CO₂A in EOR Project Management Experience
 - Concepted and constructed (Val Verde CO₂ PL, North Cross CO₂ PL, Anadarko's Wyoming CO₂ PL, Weyburn CO₂ PL)
 - □ La Veta CO₂ PL 2nd Qtr 2007
 - 16 miles-8 inch, initially 35 MMCFD, ~500k VERS per annum
 - Developing projects (West Texas, South Texas, Wyoming, Kansas and Louisiana)
- Carbon Reduction Creation and Trading Experience
 - Sold and delivered approx. 10 million tonnes of ghg VERs from geologic sequestration
 - □ Sourcing approx. 700 MMCFD of geo-seq CO₂A injection

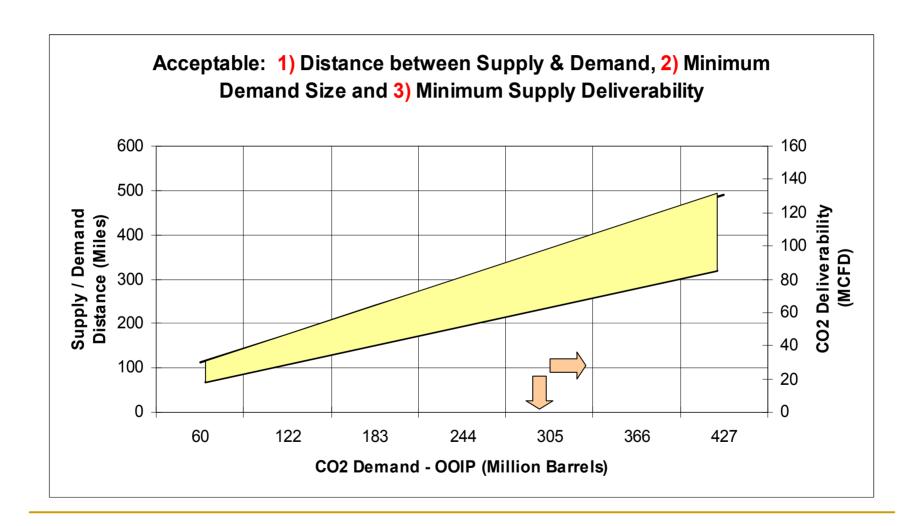
CCS Example: La Veta Project

- Dual source, dual compression, dual storage
- Membrane separation
- 25 MMCFD anthropogenic,
 10 MMFD geologic CO₂
- \$38 million (\$6.5 million in CO₂ investment)
- CO₂ CCS in June 2007
- 500k tonnes/yr of ghg VERs
- 8", 16 mile CO₂ pipeline
- Project growth
 - 600 BCF CO₂ (37 million tonnes VERs reductions)

Membrane separation plant

8 inch CO₂ pipeline

Lessons Learned in Vent Stack CO₂


Connections

- Val Verde Project
 - Buying vent stack CO₂
 - Economics, interruptability, quality, types of proration
 - Aggregating multiple CO₂ sources
 - Proration of takes based on economic conditions of CO₂ source, quality
 - Balancing and banking
 - CO₂ balancing agreements
 - Managing interruptability
 - Banking
 - Secondary storage
 - Should be a low cost, no cost

North Cross Project

- Initial screening models for vent stack sources
 - Fundamentals: OOIP, distance, CO₂ deliverability
 - Accuracy of model tested against actual projects
 - Variables: line size, thru-put, pressure origin/termination, steel prices, construction costs, ROW costs, CO₂ costs, compression investments and opex, two forms of CO₂ separation, CO₂ dehy investment and opex, OOIP, CO₂ deliverability & reserves, ghg VER costs & revenues

Screening a Project's Viability

EOR Project Screening

Key Assumptions Input

PROJECT SCREENING - THEORETICAL FLOOD ANALYSIS

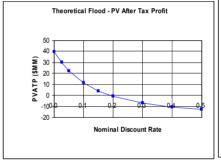
RESERVOIR DATA INPUT Current Oil Rate Current Oil Cut 0.027 fraction Decline Rate 0.120 fraction/year Existing Injectors Existing Producers New Producers TA'd Producers Average Depth 5000 ft Pattern Size 11.80 acres/pattern Average Net Pay Average Porosity 0.099 fraction 0.800 fraction Initial So Bo(initial) 1 30 rb/stb Bo(current) 1.25 rh/eth BCO2 0.45 rb/mcf Water Inj Rate 600 bw/d/pattern 0.00 fraction lost Injection Losses

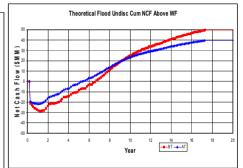
Total CO2 Injected	98	bcf
	0.72	
CO2 Purchased	46	bcf
EOR Recovery	8.1	mmstb
	0.17	frac OOII
Net CO2 Utilization	5.7	mcf/stb
Nominal Injectivity	0.144	hcpv/yr
Effective Injectivity	0.144	hcpv/yr
HCPV	1522526	rb/patteri
OOIP	1171174	stb/patte
Initial Investment	5.9	mm\$
Recycle Investment	13.4	mm\$
Total Investment	19.2	mm\$
PVPAT (at 10%	11.5	mm\$

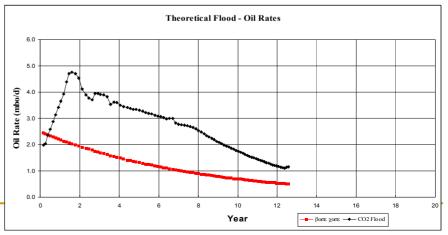
CAPITAL INVESTMENT CALCULATIONS

Royalty	0.125	fraction
Oil Price	14.00	\$/bo
Increase	0.02	fraction/year
CO2 Price	0.55	S/mcf (flat nominal)
Inflation	0.02	frac per year
Recycle Cost	0.20	\$/mcf
Lift Cost	0.10	\$/bbl
Fixed Cost	0	m\$/month
Discount Rate	0.10	fraction/year
Fed Tax Rate	0.35	fraction
EOR Tax Credit	0.15	fraction
SevTax Relief	0.023	fraction (half of Texas rate

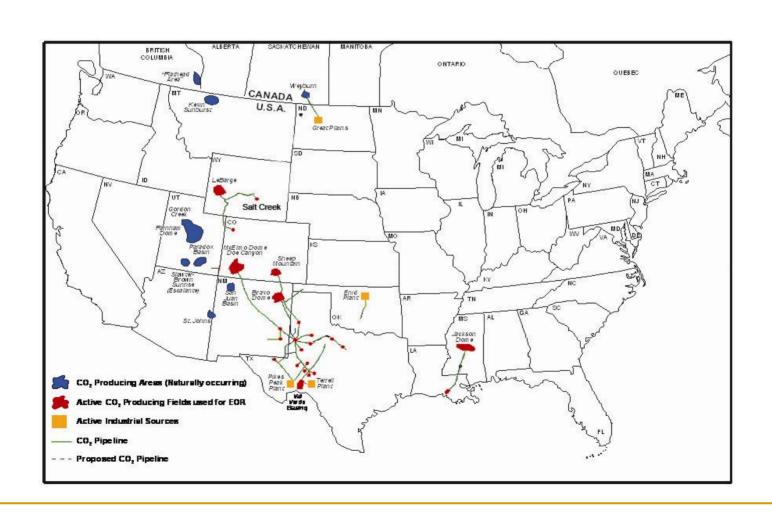
Max CO2 Purchased	64	mmcf/d
Max Gas Produced	29	mmcf/d
Recycle Capital	1252	\$/mmcf
Well Spacing	5	acres/well
Total Injectors	40	
Total Producers	47	
Injector Capital	0.02	mm\$/injector
Producer Capital	0.01	mm\$/produces
Trunk Line	0.3	mm\$
Drilling Costs	0.0	mm\$
Wells	4.3	mm\$
Surface Facility	1.4	mm\$
Recycle System	13.4	mm\$
Other	0.0	mm\$

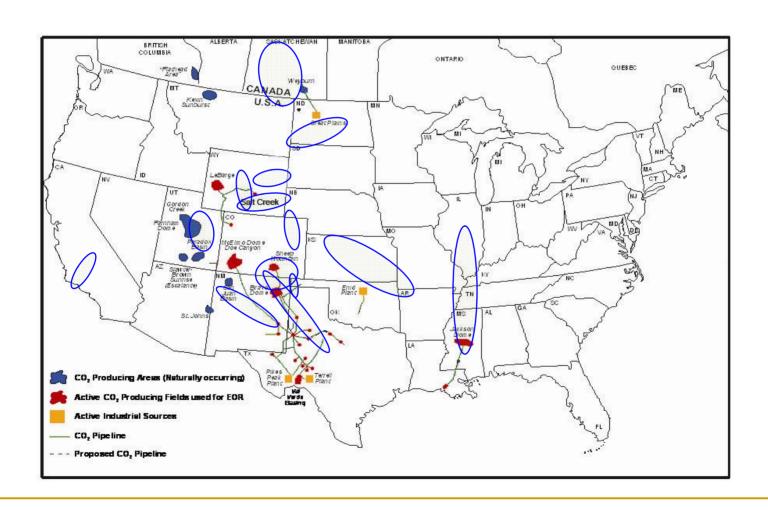

INPUT FOR CAPITAL INVESTMENT CALCULATION


CO2 Source 0.50 miles


BUBLIT FOR CACHELOW CALCITATION

(Distance from major CO2 pipeline)


Economic and Operational Output



US CO₂ to EOR Sources and Sinks

Blue Project Developments "

Lessons Learned in Vent Stack CO₂

Connections

- Wyoming Project
 - CO₂ demand aggregation
 - Screening buyers
 - Transparency, clear motives and representations
 - Commingling ghg VER sources
 - Consistent verifiers and protocols
 - Regional commingling
 - Flexibility in VER takes
 - Ghg VER balancing
 - Managing interruptability
 - Securing supply
 - Improving VER price

- La Veta Project
 - Dual CO₂ sources/sinks
 - Sharing the cost of vent stack
 CO₂
 - Reducing interruptability
 - □ Dual CO₂ pressures
 - Lowing cost of delivered CO₂
- Connecting the CO₂ Source and Geologic Sequestration (Canada)
 - Transparency
 - Advocacy of source and demand
 - Realities of both source and demand

CCS Commercial Issues

- CO₂ pipeline investment estimates
 - □ \$40k to \$50k per in diameter per mile
- Physical CO₂ commercial prices (vintage, type)
 - Retail \$3 to \$12 per tonne
 - Wholesale/Reseller \$3 to \$7 per tonne
 - Industrial \$2 to \$10 per tonne
 - Financial \$2 to \$8 per tonne
- Ghg VER commercial prices
 - Buyer types
 - US fractured and unstructured marketplace
- CO₂ pipeline risks & rewards

CCS Risk and Regulatory Issues

- Storage liability
- Pipeline common carrier status
- EOR to Saline build-out

Utah Ghg Opportunities

- Win the race of CO₂ imports/exports
- Transportation projects (pipeline and truck)
- Methane measurement and management (CMM, AMM and pipelines)
- Linkages with other states/regions
 - Ghg registries
 - Ghg carbon trading
- Utah carbon footprint
- Engage the retail industry

Blue Source at a Glance

Background Information Not Presented

Blue Source, The Elevator Speech

Blue Source is the largest ghg VER portfolio in the world having delivered 60% of all NA transactions sourced from ghg offsets in 45 states and 40+ million tonnes presently on public NA registries. The company operates at the intersection of the energy industry and the environment. During 2006 and in combination with First Reserve, Blue Source created the largest US-based investment pool for carbon capture and storage in North America. Prior to this, the company's management build, owned and operated 4 of the 5 anthropogenic CO₂ pipelines in NA in the last 20 years. The company has long term ghg VERs sourcing agreements with CCS providers representing 85% of the marketplace. Producing 25 million tonnes each year of ghg VERs, the company's portfolio model dramatically enhances individual ghg VER supplier values. The company is positioned to lead the development of the North American carbon highway.

Blue Source at a Glance

Overview

- The Company's two primary US segments: a ghg VER portfolio and a physical CO₂/CH₄ project development group.
- □ The Company is the largest single source of ghg VERs in North America.
- □ Ghg VERs are sourced in 45 states in vintage years from 2000 to 2019.
- The Company has approx. 45 million tonnes of ghg VERs on existing public registries in North America.
- □ The Company has developed, constructed and/or operated 4 of the 5 anthropogenic CO₂ pipelines in North America in the last 20 years.
- Blue Source is own 50/50 by its founders/senior management and First Resource Corporation, the largest private equity energy firm in the world.
- Blue Source announced the formation of a \$1 billion (equity/debt) investment source in project development for US-based ghg VERs and physical CO₂/CH₄.

Blue Source at a Glance

- Greenhouse Gas Emission Reductions Business
 - □ Ghg VER supplier, aggregator, portfolio and risk mitigation tools (~350 million tonnes thru 2019)
 - Completed largest number of US-based offset transactions to date
 - Transacted Non-Kyoto to Kyoto
 - Eleven types of ghg ERC offsets
 - Development of first protocols: geologic sequestration, transportation,
 ECM, logistics and coal bed methane
- CO₂ Business
 - Concepted and/or constructed (Val Verde CO₂ PL, North Cross CO₂ PL, Anadarko's Wyoming CO₂ PL)
 - Initially 150 MMCFD (~3 million tonnes/yr ghg VERs)
 - □ La Veta CO₂ PL 2nd Qtr 2006
 - 16 miles-8 inch, initially 35 MMCFD, ~500k VERS per annum
 - Developing 9 projects (West Texas, South Texas, Wyoming, Canada)